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EVOLUTION OF A ONE'DIMENSIONAL MAGNETOSONIC SOLITON 

A. V. Gordeev UDC 533.951 

It is well known that the hydrodynamic equations for cold electrons and ions (nmc 2 >2> 
H2/8~ >>nT) have a solution in the form of a steady-state solitary wave (soliton) [i]. 

In the present work we investigate the stability of a flow of this sort with respect to 
electron per1:urbations of helicon type [2]. The stability of solitons in the Korteweg--de 
Vries approximation has been investigated by Kadomtsev and Petviashvili [3], who showed that 
a weak MHD soliton is stable against negative-dispersion perturbations. 

We start from the equations of two-fluid hydrodynamics in the quasineutrality approxima- 
tion n e = ni: 

riVe e E - -  e 
m ~  d i  -7- [ v e i l ] ;  (i) 

dv~ e [v~t t ] ;  ( 2 )  
m i -d7 = e E  + "7" 

r o t H = 4 ~ e n '  - - r e ) :  ( 3 )  c t v~ 

rot E - -  i OH. 
a t '  (4) 

On 
O--7 + d i v  (nv)  = O. ( 5 )  

Allowing for electron inertia in the lowest order in the parameter me/mi<<l , Eqs. (I)- 
(5) can be used to construct a one-dimensional magnatosonlc soliton whose magnetic field H z = 
Ho[l + h(x -- ut)] is described by the equation [i]: 

�9 2 - -  a dh h ~ / ' -  ~ (2 -~- h) 2 
d x  h '-- h2/2 , 4M 2 , 

M 2 

where 
(l 2 : :  maC2 . u 2 . (Ho ~- Hmax) 2 

4"~eO'no ' ~I2 --~ H~/4~norn  i ' U2 - -  t6 nnom i 

The density n and longitudinal velocity of the soliton v x are then given by 

n n~ h ~ h2/2 
= ~ - - v  ' v x ~ U  h,12 

x 

We now investigate the stability of the soliton With respect to perturbations, the frequency 
of which is large: ~He > m>>u/a. 
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Equations (1)-(5) give the following estimate for the density variation in such pertur- 
bations: 

6n/n o ,.-., (~/aco) 2 6 t t / H  o. (6 )  

Thus, for high-frequency perturbations, the motion of the ions and the variation of the 
density can be neglected. The profiles of magnetic field H z and density n can then be re- 
garded, with the same accuracy, as stationary in a laboratory system of coordinates. This 
means that the stability of the soliton with respect to high-frequency perturbations can be 
investigated within the framework of the electron equations: 

= ~ d r .  (7) otI rot  [vHl + ! c rot  -~-, 
o t  

ro t  H = - -  4~e~__~ v. (8 )  
C 

We emphasize that the motion of the ions is important for the appearance of instability, as 
it forms a definite density profile in the sollton. However, this motion proves to be slow 
with respect to the considered perturbations, and the stability can be investigated assum- 
ing the ions have no motion and the density profile is prescribed. 

Equations (7) and (8) yield an equation for three-dimensional perturbations which is a 
generalization of Eq. (8) of [2] with electron inertia for a cold plasma (T = 0) taken into 
account. 

Expanding the perturbations as a Fourier series in time and the coordinates y and z, we 
obtain 

Aar,,-- m Hx .--rAH  .= 

where 

~, ( r )t 
fop / 

and the prime denotes differentiation with respect to x. 

Assuming the perturbations tO be independent of y(ky ffi 0), utilizlng the rela=ionship 
valid for a solitonD 

a" --ff noH ' 

= k 2 = k 2 + v, we obtain the following equa- and introducing the notation v n/no, k a = k~a 2, 
tion for the y component of the vector potential A: 

A " - -  k ~ A - - ~ [ - - - 4 -  ) A = ~,5 t ~  [L-.7- ( A" --_X~:A(]' _ v  1 /  k~A" (lo) 

where the dimensionless variable s = x/a; and 

4~en 0 
70 = V ~ - m ' a ,  ? 
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Equation (I0), which allows for the inertia of the electrons, is quite complex, and in 
the general case is not amenable to analytical treatment. Accordingly, we consider it for 
y~ i, when the right-hand side of Eq. (I0) is small. Along with y>>u/a, this gives the 
following limitation on y~: 

mil~ ~ <<?~<<i, 

which is valid for ka >>me/m i. 

The right-hand side of Eq. (i0) contains derivatives of the third and fourth orders; 
simple discarding of "small" terms is accordingly unjustified, and the equation requires a 
special analysis [4]. The theory developed in [4] enables us to assert that Eq. (I0) with 
boundary conditions 

i ' ( o )  = A ' " ( O )  = O, A ( o o )  = A " ( ~ o )  = 0 

has, for sufficiently small y~ > 0, a unique solution A(s, y~) provided that E q .  (!0) with- 
out the right-hand side and with boundary conditions A'(0) = A(~) = 0 has a unique solution 
A(s). It can then be asserted that for y~ < e, the quantity IA(s, y~) --A(s) I < ~(e). 

Let us now find, from physical considerations, that region of small y~ where the solu- 
tion A(s, y~) goes over into A(s). To this end we note that the dimensionless potential U = 
[v/(l + h)](h'/v)' in the left-hand side of Eq. (i0) varies from Uo(M) < 0 at h0 = 2(M-- i) 
to zero at h~ = (1/2) (#8M a + i -- 3), then reaches a maximum UI(M) and falls to zero at h = 
0. It can be shown by approximating the potential that the permissible values of y~ are de- 
termined from the condition 4U~y~ < i. Utilizing the estimate U~ < 1/3, we find that y~ <<I 
assures coupling of the solutions A(s, y~) and A(s). 

The problem of the instability of a magnetosonic soliton for ky = 0 has thus been re- 
duced to the condition for the existence of at least one level for the equation 

A " 6 - ( E - - U ) A  = O, (Ii) 

where U = [v/(l + h)](h'/v)'; and the eigenvalue must satisfy the condition E = ka >>me/m i. 

Equation (ii) always has a level provided S Uds~O. 

We introduce the quantity k(M) = -- i'Uds. For M < 1.3, the effective potential well in 
0 

Eq. (ii) is shallow and, in accordance with [5], k = k(M). However, the condition k~>>me/mi 
i s  t h e n  n o t  f u l f i l l e d .  

With increasing Mach number M, the quantity 

l 
(M~ = 

2(M--l) 
dhh 3(h '~-2h)--2(M~--t)1/-1--(2+h)~ 4M 2 

\ ~t 2 ] 

varies from 2.17 �9 i0 -a at M = 1.3 to 1.19 �9 I0 -~ at M = 1.5. In this range of values of M, 
an eigenvalue k 2 appears that satisfies the condition l>>ka>>me/mi . Starting from these 
Mach numbers, the one-dimensional magnetoacoustic soliton proves to be unstable with respect 
to electron perturbations of helicon type for ky = 0 with a growth rate y = YokmHe for y~ <<i. 
With subsequent increase of M > 1.5, the effective potential in Eq. (ii) increases and an es- 
timate for the eigenvalue k 2 on the boundary of stability y~ <<I can be found from expression 
(A5) (see Appendix). In order to find y~ corresponding to k ~ from the range of instability, 
we must solve the complete fourth-order equation (I0). 

Let us dwell briefly on the energy balance in the considered instability. Performing 
an averaging over periodic perturbations in the z direction, we obtain from (7) the following 
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"quasilinear" equation for the main magnetic field Hz for y~<<l: 

OHz Ho 0 t 0 { ".2 O 
< A Z ) ,  (12) 

where the angular brackets denote averaging 

It can be shown by multiplying (12) by 
netic-fleld energy decreases as a result of 
over into the energy of the electron motion 

with respect to z. 

H z and integrating over all z that the total mag- 
the growth of this sort of instability and goes 

o__ t dx<A..>,,_{,,, o 
Ot ~ 8~ - -  ~ n o \ n o t  t - I < 0 .  

However, as the soliton is a "rigid" formation, the reduction of the magnetic field is ac- 
companied by a readjustment of the ion motion. This means that the buildup of fast electron 
perturbations results in the deceleration of the ions. 

If we consider the stability of a sollton with respect to two-dimensional perturbations 
for k z = 0 and ky ~ 0, it can be shown that, within the framework of purely electron pertur- 
bations, the soliton will be stable. It is shown in [2] that an unsteady nonlinear MHD wave 
is unstable with respect to perturbations with k z = 0. The stability of a soliton for such 
perturbations is connected with the fulfillment of relationship (9). 

In the general case of k z ~ 0 and ky ~ 0, proof of the instability of a magnetosonic 
soliton involves an analysis of the complete fourth-order equation obtained above, as the right 
side of the equation is of order ~/k z~ 2 ~ i. 

Let us consider the question of the existence of a finite steady state reached by a one- 
dimensional magnetosonic soliton as a result of the growth of electron instability. The 
growth of electron perturbations leads to a rapid readjustment of the current configuration 
for a prescribed ion motion. However, for a time on the order of a/u, the plasma flow that 
occurs must be a solution of the general system of equations (1)-(5). 

Let us consider two-dimenslonal solutions of the form n(x - ut, z) corresponding to motion 
with velocity u along the x axis. Assuming (as in the one-dimenslonal case) quasineutrallty 
he= ni5 n and taking the velocities of the electrons and ions to be the same along the x and 
Z axes, we introduce the current function $(x, z) 

nv. = OUOx, n(v:, - -  u) = --O~;/Oz. 

As a result we obtain, in the lowest order in the parameter me/mi<<l , the following 
system of equations with which to find the profile of a two-dimenslonal magnetosonic soliton: 

[" # ~'.r a~.m ] e 
m i  [-~7 ( v x  -- u)  + Vz = c H : % ;  

m i  LOX (c.~ - -  u)  -7- v~ ~z = " 7  " H ~ v y ;  

me  L Oz ( v x  - -  u) ~ r :  = - -  e E y  - -  - 7 -  ( v z H x  ~ v x H z ) ,  

(13) 

(14) 

(15) 

where Vy = (c/4~en)AA, (A is the y component of the vector potential); H x =--~A/~z; H z = ~A/ 
~x. 

Transforming in Eqs. (13)-(15) to the quantities $, n, and A, we arrive at the equations: 

t 1 1 2 . ( v v * ) =  ~A A. 
n-T A * * V *  - -  V "-5- 4nnm i V , 

( ;  / ;/~ o c:  A A - - A  o~ o A A - -  = 0 ,  
- -  o - - f -  o-7- ~ -  OX / / 

(16) 

(17) 
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where 

Ox n gJx * 11, d: n 02" 

We have from Eq. (17): 

o~ AA -- A ---- F (4). 

Inserting this expression into (16) and taking the rot of both sides, we obtain: 

(18: 

1 F' %) A 
- ~  A * r  + 4 .~ ,~oa~  = * (4)-  (19) 

Finally, inserting the obtained expressions (18) and (19) for A and ~ into (16) and in- 
tegrating, we obtain the following equation for n: 

A_____~ 2 A F ( ~ )  , t ( @  )o._= 
8:tminoa" -J- 4mninoaZ ' 2 Vl~ i (I) (4) dt~. (20) 

L ,  

Equations (18)-(20) describe the two-dimensional magnetosonic soliton obtained as a re- 
sult of the splitting up of the front of a one-dimensional magnetosonic soliton along the z 
axis. We note that in the two-dimensional soliton there is a component of magnetic field H x 
along the direction of motion. In accordance with the general theory, Eqs. (18)-(20) depend 
on two arbitrary functions F(~) and ~(~) [6]. 

We shall now give some qualitative considerations favoring the existence of a solution 
of Eqs. (18)-(20) for a particular choice of these functions. Let F(~) = Fo~, ~(~) =--#o42, 
and suppose for the meantime that n is constant. A Fourier expansion for Eqs. (18) and (19) 
then leads to the following nonlinear equation in k-space: 

4k  = a~-n~ ~ (l + k2a 2) r ~ ~ 4kl~k--k,. (21) 
0 0 k t  k2a 2 (1 + k-~a ~-) , , - 7 -  

~nra i 

It is shown in [7] that a numerical iteration procedure for (21) converges and gives a 
localized solution. This same conclusion holds for a sufficiently small variation of the 
densitY 6n = n(O) -- n(=), the magnitude of ~n and the density profile being determined from 
Eq. (20). In this manner, for values of M~I.5, the above-considered instability can lead 
to a readjustment of a one-dimensional magnetosonic soliton into a two-dimensional. The 
question of the profile of such a soliton and its stability requires further investigations, 

A 

~ s~ e2 

Fig. 1 

APPENDIX 

i. Consider the equation 

A "  - -  (k 2 + U ) A  = O, (AI) 
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and let 

SUds <~ O, 
- - o o  

where the potential U has the form shown in Fig. i. 

We introduce test functions in the regions [0,so) and (so, ~) which satisfy the boundary 
conditions A'(O) = 0, A(~) = 0 and which are normalized A(so) E Ao > 0. 

Then, in region I, 

S$ 

A~ (so) = .I A (k' + U) ds, (A2) 
o 

and in region II, 

AII (so) = - -  I~'A o - -  ~ A U  e x p  [ - - / :  ($ - -  so) ] d s .  (A3 ) 
So 

We denote 5(k) - A~i(so ) -A~(so). 
give a solution of Eq. (AI) in the entire range [0, ~). 

We have from (A2) and (A3) that 
ec S o 

A (t0 = - k . 4 o - - A o  ~ C:ds - -  ~ ' (A - -  .4o) I rJ  l a s  + 
o o o 

- -  I e s u  1.4. - -  .4 e x p  [ - -  k (s - -  so)l}: 
;. 

If, for some k = ko, 5(ko) = 0, then the test functions 

(A4) 

SO 

For fixed Ao and k -~ 0 the integral .I" Ads is constant, depending only on U. 
0 

s > So, the inequality Ao > A > A exp [--k(s -- so)] is valid, so that jdsU{A0--Aexp[--k x 
$0 

so 

(S -- So)]} ~ O. Finally, since A'(s) < 0 for s < so, we have for small k that I(A--Ao)IUjds>O. 

Then, for sufficiently small k, A (k) >-- A o S Uds>O. Let us now consider the caseof largek. 
0 

SO 

The integral [ . A d s  remains a positive quantity. For sufficiently large k, A' (s) > 0 for 0< 
0 

8~ 

s < so and 6[(A --Ae)IU[ds<O, if k> k I ~ Vmin IU(s.< •)1. If we now choose k to satisfy the 

f $4 %~ 

condition k>max(k,,j'IUlds ,] it follows from (A4) that h(k) < 0. Accordingly, for a contin- 
0 

uous variation of k, there exists a k = k0 such that A(k@) = 0 and Eq. (AI) has an eigensolu- 
tlon corresponding to k = ko. 

2. Let us obtain an estimate for the eigenvalue k a of Eq. (AI). To this end we inte- 
grate the equation with respect to s from zero to s,, where A(s,) = Aa and k a >>U(s,): 

As A'(S) < 0 for 

Introducing the notation 

- -  kAa = k~ .t" Ads  - -  i" AUds .  
o b 
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s I s. 1 

aA 3 "-- ! Adx,  bAa = - -  t AUds ,  
6 b 

we obtain 

# =  ( 1 2 a ) ( l  ~ l _ ~ b a -  1). (A5) 

It follows from (A5) that k = ~ k2(M) for k(M) <<*/~, and that k ~ ~ k(M) for k(M) >>z/~. 
We note that Uo(M) = -- 2M(M-- 1)2/(2 -- M)a(2M-- I) is not small for all considered Mach num- 
bers M and the well cannot be regarded as shallow. 

The author thanks L. I. Rudakov for discussions on the work and V. I. Petviashvili for 
useful critical remarks. 
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CALCULATION OF TOROIDAL INDUCTIVE ACCUMULATORS WITH A D-CROSS SECTION 

FROM PARAMETERS OF A DISCHARGE PULSE AND OF THE CHARGING DEVICE 

I. A. Ivanov, V. V. Sizov, and V. A. Trukhin UDC 621.039.6 

One method of increasing the power of the discharge pulse of an inductive accumulator is 
based on the use of a scheme with a switch-over: With charging, the sections of the accumu- 
lator are connected in series and with discharge, in parallel. In this case, rigid require- 
ments are imposed on the symmetry of the cross section. Such requirements are satisfied by 
constructions with a toroidal field (another of their advantages is the absence of scattering 
fields). In [I] it is shown that, for windings on a thin busbar , with a width increasing pro- 
portionally to the radius (an s-coil), for a thin conductor of constant width [2] (an l-coil), 
there exists a profile with which the pressure of the toroidal field is balanced by the volt- 
age of the curved part of the coil. The internal rectilinear section of the coil is subject 
to compression in the direction of the principal axis and to longitudinal elongation. In a 
construction with such a profile, with uniform equilization of the radial compression, the 
action of the bending moments is everywhere completely excluded. The form of the profile, 
with which the winding does not undergo the action of the bending moments, is called a D-sec- 
tion. A construction with a D-section is optimal with respect to mechanical strength. In 
[i] it is shown that such a construction is also optimal with respect to energy capacity. 
Therefore, in comparison with other variants of toroidal constructions in coils with a D-sec- 
tion, the specific parameters are found to be the highest. 

i. Method of Calculation 

The form and the dimensions are determined by two parameters: the mean radius ro = (r: + 
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